
Server

c○2010 BitTorrent, Inc.

TABLE OF CONTENTS TABLE OF CONTENTS

Table of Contents

Overview

Introduction

𝜇Torrent Server is designed for use on computers running Linux and other
UNIX-like operating systems. It provides a state-of-the-art implementation
of the BitTorrent protocol and a full-featured web-based user interface in a
small footprint.

Features

𝜇Torrent Server is a full implementation of the official BitTorrent protocol.
Features include:

∙ Distributed hash table (DHT)

∙ UPnP port mapping

∙ NAT-PMP port mapping

∙ Upload rate limiting

∙ Download rate limiting

∙ Queuing

∙ Configurable limit on number of simultaneously uploading
peers

∙ Incremental file allocation

∙ Block level piece picking

∙ Separate threads for file-check and download

∙ Single thread and single port for multiple torrent downloads

∙ BitTorrent extension protocol

∙ Multi-tracker extension support

∙ Fair trade extension

1
c○2010 BitTorrent, Inc.

TABLE OF CONTENTS TABLE OF CONTENTS

∙ Compact tracker extension

∙ Fast resume

∙ Queuing of torrent file-check if fast resume not possible

∙ HTTP seed support

∙ Resumption of partial downloads from other BitTorrent clients

∙ File-sizes greater than 2GB

∙ Selective download of multi-file torrents

∙ IPv6

∙ High performance network stack

∙ uTP - Advanced UDP-based transport with dynamic con-
gestion control

Additionally, 𝜇Torrent Server includes a full-featured web-based user inter-
face.

Getting Started

𝜇Torrent Server consist of an executable (utserver) that implements Bit-
Torrent services and is controlled through an HTTP-based application pro-
gramming interface (API).

Command-line Arguments

𝜇Torrent Server supports the following arguments - the keywords are case-
insensitive and should be immediately preceded with a dash (-):

∙ configfile - path to and name of the configuration file
- if this argument is not specified, the utserver program
looks for a file named utserver.conf in the current working
directory - see the following section for more details

2
c○2010 BitTorrent, Inc.

TABLE OF CONTENTS TABLE OF CONTENTS

∙ logfile - path to and name of the log file - specifying
-logfile filename will direct log output to filename, while
specifying -logfile without a filename will direct log file
output to utserver.log in the current working directory

∙ settingspath - path to directory to store files of relatively
small size (operational settings, torrent resume information,
RSS feed information) - if not specified, the utserver pro-
gram will store these files in the current working directory

∙ pidfile - path to and name of the file to create that will
contain the process ID of the utserver process

∙ daemon - directs the server to run in its own process group

∙ usage - directs the server to generate message describing
supported arguments and then exit

Configuration File

At startup the utserver process looks for a configuration file which allows
the behavior of the product to be customized by changing the values of
certain settings. The format of this file is as follows:

∙ each setting is on a separate line;

∙ each line consists of colon-separated name of the setting and
its value;

∙ any line whose first non-whitespace character is # is a com-
ment.

For example, a file that sets two values and includes one comment might
look like:

This is a comment
dir_temp_files: temp
preferred_interface: eth0

For a complete list of application settings, see Application Settings.

3
c○2010 BitTorrent, Inc.

TABLE OF CONTENTS TABLE OF CONTENTS

Environment

When the utserver process creates files intended for end users, such as tor-
rent data files, it uses the value of the file mode creation mask to specify
access to these files. For more information, run man umask on a Linux com-
mand line. The value of the file mode creation mask is not considered when
creating files not intended for use by users, such as settings files.

Application Settings

Settings fall into two categories:

∙ internal settings, whose values can only be set in the utserver.conf
file;

∙ regular settings, whose values can be set in the utserver.conf
file or the /api/app-settings-set RPC API call.

A setting can be of one of three types:

∙ string

∙ integer

∙ Boolean value (1 for true and 0 for false)

Internal Settings

bind_ip (string): IP address to use for socket connections. If not pro-
vided, a default IP address will be used. We do not recommend chang-
ing this value.

ut_webui_port (integer): Default value: 8080. Port number where the
utserver process accepts HTTP RPC API calls to support the 𝜇Torrent-
compatible HTTP interface. If the utserver process also serves HTML
files (see webui_server_files setting), also the port of HTTP server.

4
c○2010 BitTorrent, Inc.

TABLE OF CONTENTS TABLE OF CONTENTS

token_auth_enable (boolean) Default value: true. If true, the 𝜇Torrent
HTTP interface defends against cross-site request forgeries by requiring
that a short-lived token be obtained from the 𝜇Torrent HTTP interface
and included at the beginning of the parameter list of any request made
to that interface. If false, the 𝜇Torrent HTTP interface will not be
protected in this manner.

dir_active (string): Default value: “./”. Directory in which currently
downloaded data is saved. Can be an absolute path or a relative path.
If it is a relative path, the value is relative to dir_root or the cur-
rent working directory if dir_root is not defined or an empty string.
It is recommended that this directory be hidden from users (i.e. not
exported through Samba).

dir_completed (string): Default value: “”. Directory where completed
downloads are stored. If the value is an empty string, the value of
dir_active is used. This value must represent a path that is accessible
to users (e.g. exported through Samba). It also has to be on the same
volume as dir_active.

dir_download (string): Default value: “”. Optional directory where com-
pleted downloads can be stored, instead of in dir_completed. If no
value is specified for this setting, the value of dir_completed is used.
The value must represent a path that is accessible to users (e.g. ex-
ported through Samba).

This option can be specified multiple times in the file - once for each
directory to be designated as such. This option can be used when
adding torrents via the 𝜇Torrent HTTP interface, not via the SDK
interface.

Use the action list-dirs to obtain a list of download directories from
the 𝜇Torrent HTTP interface. Use the option download_dir to specify
which of these directories to use when adding a torrent by URL or file
through the 𝜇Torrent HTTP interface; specify the one-based index
of the entry of interest. The index of each entry will be in order in
which each entry appears in utserver.conf, starting with 1 for the
first entry, 2 for the second entry, and so on. 0 indicates the default
download directory should be used.

dir_torrent_files (string): Default value: “”. Directory where torrent
files are stored. If the empty string, the value of dir_active is used.

5
c○2010 BitTorrent, Inc.

TABLE OF CONTENTS TABLE OF CONTENTS

It is recommended that this directory be hidden from users (i.e. not
exported through Samba).

dir_temp_files (string): Default value: “”. Directory where temporary
files are stored. If the empty string, the value of dir_active is used.
It is recommended that this directory be hidden from users (i.e. not
exported through Samba). Also, using a separate directory just for
temporary files allows for deleting the files in this directory on boot
and/or periodically. The utserver process creates temporary files with
a .utt extension - if a value for this setting is specified, the utserver
process will delete all files with that extension in that directory at
process startup. This setting applies only to POSIX systems. The
value should specify a directory, not a symbolic link to a directory.

dir_autoload (string): Default value: “”. Directory where torrent files
will be recognized and auto-loaded. If the empty string, auto-load is
disabled.

dir_autoload_delete (boolean): Default value: false. If true, torrent
files in the autoload directory will be deleted after being loaded, else
they will be renamed with an extension of .loaded. The dir_autoload
setting must be specified for this setting to have an effect.

dir_request (string): Default value: “”. Directory where maintenance re-
quest files will be recognized, loaded, and deleted. If the empty string,
maintenance request handling is disabled. This directory should be
hidden from users (i.e., not exported through Samba). Your software
running on your device can create the following files in this directory
in order to request the following maintenance procedures.

If the file c.utmr is created in or moved into this directory, the creden-
tials necessary to access the 𝜇Torrent HTTP interface will be reset to
username admin and a blank password.

If the file wipl.utmr is created in or moved into this directory, the IP
restriction list that limits the IPs that can use the 𝜇Torrent HTTP
interface is cleared, so that there will be no restrictions on IP address.

These maintenance operations provide a way to help a user who has
either entered new credentials and then forgotten them, or who has
entered an IP range in the restricted list and can no longer access the
𝜇Torrent HTTP interface as a result.

6
c○2010 BitTorrent, Inc.

TABLE OF CONTENTS TABLE OF CONTENTS

If the file rcf.utmr is created in or moved into this directory, the
server will reload the configuration file. If you always use this method
to request a configuration file reload, you can safely change the value
of this setting while the server is running.

The server will also reload the configuration file if you send a hangup
signal to the server; however, a race condition may occur if you send a
hangup signal to the server in order to change the value of this setting.
You should either only use the file system interface for requesting con-
figuration file reloads, or you should not change the value of this setting
in the configuration file before sending a hangup signal to the server.

upnp (boolean): Default value: true. If true, UPNP functionality for map-
ping ports is used by utserver. We recommend setting this value to
true.

natpmp (boolean): If true, NAT-PMP functionality for mapping ports is
used by utserver. Default value: true. We recommend setting this
value to true.

lsd (boolean): Default value: true. If true, Local Service Discovery is en-
abled. We recommend setting this value to true.

dht (boolean): Default value: true. If true, Distributed Hash Table exten-
sion is enabled. We recommend setting this value to true.

pex (boolean): Default value: true. If true, Peer Exchange extension is
enabled. We recommend setting this value to true.

rate_limit_local_peers (boolean): Default value: false. If true, rate
limiting also applies to communications with peers in the local subnet.
We recommend setting this value to false.

dir_root (string): Default value: “”. If not empty, dir_active, dir_completed,
and dir_torrent_files are relative to this directory.

disk_cache_max_size (integer): Default value: 0. Maximum amount
of memory used by each of the read, write, and piece caches. Value is
in megabytes. If 0, accepts the SDK’s default choices on selecting sizes
of disk caches. Maximum value is 512.

The value of this setting will be applied every time the utserver pro-
cess starts.

7
c○2010 BitTorrent, Inc.

TABLE OF CONTENTS TABLE OF CONTENTS

preferred_interface (string): Default value: “”. If defined, name of net-
work interface to be preferred when attempting to search among net-
work interfaces for an external IP and hardware address. If empty
string, preferred interface is ignored.

You need to provide a value for this setting if either 1) the toolchain for
your computer does not supply ifaddrs.h, or 2) you want the utserver
process to choose a different interface than it would choose on its own.
You should set a value for this setting if you see an incorrect port
mapping on a UPnP router for the subnet to which the device belongs
(the IP address of the device will not appear in the port mapping
requested by the utserver process - instead, the IP address associated
with the mapping will be 0.0.0.0 with a device having a toolchain that
does not include ifaddrs.h, or some other IP address with a device
having a toolchain that includes ipaddrs.h).

The value of this setting will be applied every time the utserver pro-
cess starts.

admin_name (string): Default value: “admin”. If defined, name that
must be supplied (along with the password) when authenticating to
the server via the HTTP interface. This allows the administrator to
define an initial non-default value for this name. This value will not
be applied from utserver.conf if settings.dat already exists.

admin_password (string): Default value: “”. If defined, password that
must be supplied (along with the name) when authenticating to the
server via the HTTP interface. This allows the administrator to define
an initial non-default value for this password. This value will not be
applied from utserver.conf if settings.dat already exists.

logmask (integer): Default value: 0. A mask whose bits when set allow
certain categories of log messages to be generated. The value of this
setting will be applied every time the utserver process starts.

The bits (0 - 31) in the value of this setting correspond to a set of
internal events and subsystems. The usage of these bits may change
without advance notice in a future release.

∙ 3 - send have

∙ 6 - hole punch

∙ 7 - got bad piece request

8
c○2010 BitTorrent, Inc.

TABLE OF CONTENTS TABLE OF CONTENTS

∙ 8 - trace

∙ 9 - piece picker

∙ 10 - got bad cancel

∙ 11 - got bad unchoke

∙ 12 - got bad piece

∙ 13 - rss

∙ 14 - rss error

∙ 15 - got have

∙ 16 - got bad have

∙ 17 - error

∙ 18 - aggregated

∙ 19 - disconnect

∙ 20 - out connect

∙ 21 - in connect

∙ 22 - UPnP

∙ 23 - UPnP error

∙ 24 - NATPMP

∙ 25 - NATPMP error

∙ 26 - metadata finish

∙ 27 - web UI

∙ 28 - got bad reject

∙ 29 - pex

∙ 30 - peer messages

∙ 31 - blocked connect

ut_webui_dir (string): Directory where the web UI file archive webui.zip
is stored, or which contains a webui subdirectory within which the
unarchived web UI files are stored. It can be an absolute path or set
relative to the current directory. It is recommended that this direc-
tory be hidden from users (i.e. not exported through Samba). Default
value: “” (to use the same directory as settings.dat and other settings
files).

9
c○2010 BitTorrent, Inc.

TABLE OF CONTENTS TABLE OF CONTENTS

finish_cmd (string), state_cmd (string): If defined, finish_cmd is a
command that will be executed upon completion of each torrent, and
state_cmd is a command that will be executed when a torrent changes
state. Default value: “” (no command is run for the event(s) associated
with that setting).
The command is run asynchronously, so that a lengthy or hung process
will not block the server. The server creates a new process group for
the command, so that the server does not need to wait for it, and so
the kernel process table does not fill up with zombie processes. The
command is run as the same user that runs the server process.
The server permits substitutions in the command text as follows:

%F Name of downloaded data file (for single-file torrents)
%D directory where torrent data files are saved
%N torrent title
%S torrent state
%P previous state of torrent
%L label associated with torrent
%T tracker
%M status message
%I hex-encoded info-hash

State (%S) and previous state (%P) are integers that have the following
values:

∙ 1 (error)
∙ 2 (checked)
∙ 3 (paused)
∙ 4 (super seeding)
∙ 5 (seeding)
∙ 6 (downloading)
∙ 7 (super seeding (forced))
∙ 8 (seeding (forced))
∙ 9 (downloading (forced))
∙ 10 (queued seed)
∙ 11 (finished)
∙ 12 (queued)
∙ 13 (stopped)

10
c○2010 BitTorrent, Inc.

TABLE OF CONTENTS TABLE OF CONTENTS

Regular Settings

bind_port (integer): Default value: 6881. Port used for BitTorrent pro-
tocol. This can be any value in the range 1025-65000.

max_ul_rate (integer): Default value: -1. Maximum total upload rate
in kilobytes per second. -1 means unlimited. We recommend setting it
to -1.

max_ul_rate_seed (integer): Default value: -1. Maximum per-torrent
upload rate when seeding, in kilobytes per second. -1 means unlimited.
We recommend setting it to -1.

conns_per_torrent (integer): Default value: 50. Maximum number of
connections for a given torrent.

max_total_connections (integer): Default value: 200. Maximum num-
ber of connection opened at the same time.

auto_bandwidth_management (boolean): Default value: true. If true,
upload bandwidth is automatically throttled in order to not impact
other applications using TCP/IP.

max_dl_rate (integer): Default value: -1. Maximum total download
rate in kilobytes per second. -1 means unlimited. We recommend
setting it to -1.

seed_ratio (integer): Default value: 0. Seed ratio in percent (%) (e.g.
100 means 100%). If not 0, seeding will stop after reaching this up-
load/download ratio.

seed_time (integer): Default value: 0. Time after which seeding will
stop, in seconds. 0 means seeding won’t stop.

Reloadable Settings

Many of these settings are only read from the configuration file when the
𝜇Torrent settings file settings.dat does not already exist in the settings di-
rectory. Once settings.dat exists, the values specified in the configuration
file for these settings will be ignored, and the values stored in settings.dat

11
c○2010 BitTorrent, Inc.

TABLE OF CONTENTS TABLE OF CONTENTS

will be used. For other settings, the server will load the values from the con-
figuration file every time the program starts or receives a request to reload
the configuration file.

The settings for which the values are always applied from the configuration
file when the file is read by the server include:

∙ dir_request

∙ disk_cache_max_size

∙ finish_cmd

∙ logmask

∙ preferred_interface

∙ state_cmd

∙ ut_webui_dir

𝜇Torrent API

What is the 𝜇Torrent Web UI?

𝜇Torrent Server is based on the same codebase as the BitTorrent Main-
line and 𝜇Torrent PC applications, which have a powerful API to control
and configure the client from both local and remote applications, as well as
display most data available. Normally, this functionality is used in a web
browser with the reference Web UI we provide, but any application can talk
to 𝜇Torrent directly by using the Web API.

What is the 𝜇Torrent Web API?

It is an API to access the functions of the WebUI built into the application.
The API is stable and largely complete. Missing functionality will be added

12
c○2010 BitTorrent, Inc.

TABLE OF CONTENTS TABLE OF CONTENTS

over time and compatibility with existing applications will generally be pre-
served, so little to no work will be needed to keep your web app working with
future versions of the applications. Many community projects have extended
the functionality of the PC applications using this Web API. These projects
form a rich ecosystem and vibrant community. Partners should consider the
relative merits of enabling this community to extend their platforms through
the Web API. Current projects and discussion can be accessed in the Web
API section of the developer forums at forum.utorrent.com.

General notes for API access

The base URI to access the API is:

http://[IP]:[PORT]/gui/. The data returned by calls is in the JSON for-
mat.

Authentication is done with basic HTTP authentication. The guest account,
disabled by default, is limited to a subset of the calls (Action calls that modify
torrent state and application and torrent settings are disallowed).

Unless otherwise noted, each request is made using HTTP GET. Parameters
are added onto the base URI in the format that is standard for HTTP GET.
The first parameter should always be the command (e.g. ?list or ?action).

Most action commands require a hash to be passed. This is the infohash of
the torrent, obtained from listing all torrents. Each hash is a 40-character
ASCII string. Some commands accept multiple infohashes chained together,
e.g.“http://[IP]:[PORT]/gui/?action=[ACTION]&hash=[TORRENT HASH
1]&hash=[TORRENT HASH 2]&...“ to cut down on the number of requests
required.

When setting boolean values either by &action=setsetting or &action=setprops,
the value parameter should be sent as 0 for “false” or 1 for “true” rather than
a string indicating “true” or “false”.

13
c○2010 BitTorrent, Inc.

TABLE OF CONTENTS TABLE OF CONTENTS

Token Authentication System (important!)

A token authentication system (http://trac.utorrent.com/trac/wiki/TokenSystem)
was implemented in 𝜇Torrent to prevent cross-site request forgeries (CSRF).
All developers creating applications that use the WebUI backend MUST im-
plement support for this system, as the application will otherwise fail if the
user has webui.token_auth enabled.

The token= parameter must appear on a request’s parameter list before or
immediately following the action or list parameters, or the request will
fail.

In 1.8.3 (𝜇Torrent for windows) and earlier, token authentication is disabled
by default (though users can enable it manually), but this option WILL
be enable by default in future versions, so implementing support now is a
requirement for future compatibility.

Modifying Settings

The base parameter for settings is ?action=getsettings. Using this pa-
rameter by itself will give a list of settings in the following format:

{
"build": BUILD NUMBER (integer),
"settings": [

[
OPTION NAME (string),
TYPE* (integer),
VALUE (string),
PARAMETERS {

"access": (string)
}

],
...

]
}

14
c○2010 BitTorrent, Inc.

http://trac.utorrent.com/trac/wiki/TokenSystem

TABLE OF CONTENTS TABLE OF CONTENTS

OPTION NAME is the name of the setting. They are not listed here, as
some of the settings (particularly advanced ones) vary with each version
and most are self-explanatory. However, a near-complete list for 1.8.2 is at
http://forum.utorrent.com/viewtopic.php?id=55526 for your perusal.

TYPE: The TYPE is an integer value that indicates what type of data is
enclosed within the VALUE string. The following is a list of the possible
TYPEs and what VALUE type it corresponds to:

∙ 0 = Integer
∙ 1 = Boolean
∙ 2 = String

To change settings, the following URI can be used:

http://[IP]:[PORT]/gui/?action=setsetting&s=[SETTING]&v=[VALUE]

Multiple settings can be changed in a single request by chaining together
s= and v= in the URI. s= defines the setting and v= is the value for the s=
immediately preceding it.

For example, to set the global upload cap to 10KiB/s and the global down-
load cap to 40KiB/s, you would request this URI:

http://[IP]:[PORT]/gui/?action=setsetting&s=max_ul_rate&v=10&s=max_dl_rate&v=40

PARAMETERS: The PARAMETERS is a dictionary of additional attributes
of the associated setting. The only attribute currently supported is access,
which specifies if the client can view and/or modify this setting. Here are
the possible values:

∙ Y - read and write
∙ R - read only
∙ W - write only

Settings that are neither readable nor writable won’t be included in the list
of settings generated by the getsettings action.

15
c○2010 BitTorrent, Inc.

http://forum.utorrent.com/viewtopic.php?id=55526

TABLE OF CONTENTS TABLE OF CONTENTS

Torrent/labels/RSS/Filters List

To get the list of all torrents and RSS feeds, request http://[IP]:[PORT]/gui/?list=1
. This will return the torrents in the following fashion:

{
"build": BUILD NUMBER (integer),
"label": [

[LABEL (string),
TORRENTS IN LABEL (integer)],
...

],
"torrents": [

[HASH (string),
STATUS* (integer),
NAME (string),
SIZE (integer in bytes),
PERCENT PROGRESS (integer in per mils),
DOWNLOADED (integer in bytes),
UPLOADED (integer in bytes),
RATIO (integer in per mils),
UPLOAD SPEED (integer in bytes per second),
DOWNLOAD SPEED (integer in bytes per second),
ETA (integer in seconds),
LABEL (string),
PEERS CONNECTED (integer),
PEERS IN SWARM (integer),
SEEDS CONNECTED (integer),
SEEDS IN SWARM (integer),
AVAILABILITY (integer in 1/65535ths),
TORRENT QUEUE ORDER (integer),
REMAINING (integer in bytes),
DOWNLOAD URL (string),
RSS FEED URL (string),
STATUS MESSAGE (string),
STREAM ID (string),
ADDED ON (integer in seconds),
COMPLETED ON (integer in seconds),
APP UPDATE URL (string)],

16
c○2010 BitTorrent, Inc.

TABLE OF CONTENTS TABLE OF CONTENTS

...
],
"rssfeeds": [

[IDENT (integer),
ENABLED (boolean),
USE FEED TITLE (boolean),
USER SELECTED (boolean),
PROGRAMMED (boolean),
DOWNLOAD STATE (integer),
URL (string),
NEXT UPDATE (integer in unix time),
[

[NAME (string),
NAME FULL (string),
URL (string),
QUALITY (integer),
CODEC (integer),
TIMESTAMP (integer),
SEASON (integer),
EPISODE (integer),
EPISODE TO (integer),
FEED ID (integer),
REPACK (boolean),
IN HISTORY (boolean)],

...
]],

...
],
"rssfilters": [

[IDENT (integer),
FLAGS (integer),
NAME (string),
FILTER (string as regexp),
NOT FILTER (string as regexp),
DIRECTORY (string),
FEED (integer as feed ID),
QUALITY (integer in bytes),

17
c○2010 BitTorrent, Inc.

TABLE OF CONTENTS TABLE OF CONTENTS

LABEL (string),
POSTPONE MODE (integer),
LAST MATCH (integer),
SMART EP FILTER (integer),
REPACK EP FILTER (integer),
EPISODE FILTER STR (string),
EPISODE FILTER (boolean),
RESOLVING CANDIDATE (boolean)],

...
],
"torrentc": CACHE ID** (string integer)

}

STATUS: The STATUS is a bitfield represented as integers, which is obtained
by adding up the different values for corresponding statuses:

∙ 1 = Started
∙ 2 = Checking
∙ 4 = Start after check
∙ 8 = Checked
∙ 16 = Error
∙ 32 = Paused
∙ 64 = Queued
∙ 128 = Loaded

For example, if a torrent job has a status of 201 = 128 + 64 + 8 + 1, then it
is loaded, queued, checked, and started. A bitwise AND operator should be
used to determine whether the given STATUS contains a particular status.

CACHE ID: The CACHE ID is a number randomly generated by 𝜇Torrent
for the given data. By requesting the torrent list using http://[IP]:[PORT]/gui/?list=1&cid=[CACHE
ID], only the items that have changed since the list corresponding to the
CACHE ID was sent will be returned. This is used to minimize band-
width usage and simplify parsing by decreasing the amount of data sent
by 𝜇Torrent. In this situation, six new dictionary keys replace "torrents",
"rssfeeds" and "rssfilters" and the returned JSON will look as follows:

18
c○2010 BitTorrent, Inc.

TABLE OF CONTENTS TABLE OF CONTENTS

{
"build": BUILD NUMBER (integer),
"label": [

[LABEL (string),
TORRENTS IN LABEL (integer)],

...
],
"torrentp": [

[HASH (string),
STATUS (integer),
NAME (string),
SIZE (integer in bytes),
PERCENT PROGRESS (integer in per mils),
DOWNLOADED (integer in bytes),
UPLOADED (integer in bytes),
RATIO (integer in per mils),
UPLOAD SPEED (integer in bytes per second),
DOWNLOAD SPEED (integer in bytes per second),
ETA (integer in seconds),
LABEL (string),
PEERS CONNECTED (integer),
PEERS IN SWARM (integer),
SEEDS CONNECTED (integer),
SEEDS IN SWARM (integer),
AVAILABILITY (integer in 1/65535ths),
TORRENT QUEUE ORDER (integer),
REMAINING (integer in bytes),
DOWNLOAD URL (string),
RSS FEED URL (string),

...
],
"torrentm": [

HASH (string),

...
],
"rssfeedp": [

[IDENT (integer),

19
c○2010 BitTorrent, Inc.

TABLE OF CONTENTS TABLE OF CONTENTS

ENABLED (boolean),
USE FEED TITLE (boolean),
USER SELECTED (boolean),
PROGRAMMED (boolean),
DOWNLOAD STATE (integer),
URL (string),
NEXT UPDATE (integer in unix time), [

[NAME (string),
NAME FULL (string),
URL (string),
QUALITY (integer),
CODEC (integer),
TIMESTAMP (integer),
SEASON (integer),
EPISODE (integer),
EPISODE TO (integer),
FEED ID (integer),
REPACK (boolean),
IN HISTORY (boolean)],

...
]],

...
],
"rssfeedm": [

IDENT (integer),
...

],
"rssfilterp": [

[IDENT (integer),
FLAGS (integer),
NAME (string),
FILTER (string as regexp),
NOT FILTER (string as regexp),
DIRECTORY (string),
FEED (integer as feed ID),
QUALITY (integer in bytes),
LABEL (string),
POSTPONE MODE (integer),
LAST MATCH (integer),

20
c○2010 BitTorrent, Inc.

TABLE OF CONTENTS TABLE OF CONTENTS

SMART EP FILTER (integer),
REPACK EP FILTER (integer),
EPISODE FILTER STR (string),
EPISODE FILTER (boolean),
RESOLVING CANDIDATE (boolean)],

...
],
"rssfilterm": [

IDENT (integer),
...

],
"torrentc": CACHE ID (string integer)

}

The "torrentp" array contains a list of torrent jobs that have changed since
the corresponding CACHE ID and is identical to the “torrents” array in for-
mat. Similarly the "rssfeedp" and "rssfilterp" arrays correspond to the
“rssfeeds” and “resfilters” arrays respectively. The "torrentm" array contains
a list of hashes for torrent jobs that have been removed since the correspond-
ing CACHE ID. Similarly the "rssfeedm" and "rssfilterm" reflect rss feeds
and filters that have been removed since the corresponding CACHE ID. A
new CACHE ID will be given in torrentc and this can be used for the next
list request.

Files List

To get the list of files in a torrent job, request this URI:

http://[IP]:[PORT]/gui/?action=getfiles&hash=[TORRENT HASH].

This will return the following:

{
"build": BUILD NUMBER (integer),
"files": [

HASH (string),

21
c○2010 BitTorrent, Inc.

TABLE OF CONTENTS TABLE OF CONTENTS

[
[FILE NAME (string),
FILE SIZE (integer in bytes),
DOWNLOADED (integer in bytes),
PRIORITY* (integer) ,
FIRST PIECE (integer),
NUM PIECES (integer),
STREAMABLE (boolean),
ENCODED RATE (integer),
DURATION (integer),
WIDTH (integer),
HEIGHT (integer),
STREAM ETA (integer),
STREAMABILITY (integer)],

...
]

]
}

PRIORITY: This is an integer value that indicates the file’s priority. The fol-
lowing is a list of the possible PRIORITY values and what each corresponds
to:

∙ 0 = Don’t Download

∙ 1 = Low Priority

∙ 2 = Normal Priority

∙ 3 = High Priority

This command accepts multiple hashes. It will return multiple “files” key/value
pairs.

Torrent Job Properties

To get a list of the various properties for a torrent job, request:

22
c○2010 BitTorrent, Inc.

TABLE OF CONTENTS TABLE OF CONTENTS

http://[IP]:[PORT]/gui/?action=getprops&hash=[TORRENT HASH]

This will return the following:

{
"build": BUILD NUMBER (integer),
"props": [
{

"hash": HASH (string),
"trackers": TRACKERS* (string),
"ulrate": UPLOAD LIMIT (integer in bytes per second),
"dlrate": DOWNLOAD LIMIT (integer in bytes per second),
"superseed": INITIAL SEEDING** (integer),
"dht": USE DHT** (integer),
"pex": USE PEX** (integer),
"seed_override": OVERRIDE QUEUEING** (integer),
"seed_ratio": SEED RATIO (integer in per mils),
"seed_time": SEEDING TIME*** (integer in seconds),
"ulslots": UPLOAD SLOTS (integer)

}]
}

TRACKERS: This is a list of the trackers used by the torrent job. Each
newline is represented by a carriage return followed by a newline ().

INITIAL SEEDING/USE DHT/USE PEX/OVERRIDE QUEUEING: These
options are all integer values that indicate their respective states. The fol-
lowing is a list of the possible values and what each corresponds to:

∙ -1 = Not allowed
∙ 0 = Disabled
∙ 1 = Enabled

SEEDING TIME: This is an integer representing the minimum amount of
time (in seconds) that 𝜇Torrent should continue to seed after it has finished
downloading the torrent. A value of 0 (zero) means no minimum seeding
time.

23
c○2010 BitTorrent, Inc.

TABLE OF CONTENTS TABLE OF CONTENTS

To change the properties for a torrent, the following URI can be used:

http://[IP]:[PORT]/gui/?action=setprops&hash=[TORRENTHASH]
&s=[PROPERTY]&v=[VALUE]

Multiple properties can be changed at once by appending more s= and v=
pairs. Multiple torrent jobs can be modified in a single request by appending
another hash= value along with its s= and v= pairs. Any following s= and
v= pairs will modify the properties of the last specified hash.

For example, to set an upload rate limit of 10 KiB/s and a download rate of
20 KiB/s for [TORRENT HASH 1], while simultaneously setting 4 upload
slots for [TORRENT HASH 2], request the following URI:

http://[IP]:[PORT]/gui/?action=setprops&hash=
[TORRENT HASH 1]&s=ulrate&v=10240&s=dlrate&v=20480&hash=
[TORRENT HASH 2]&s=ulslots&v=4

Actions

This section contains a list of all the other possible actions supported by the
API. All actions are in the form http://[IP]:[PORT]/gui/?action=

?action=start&hash=[TORRENT HASH] This action tells 𝜇Torrent
to start the specified torrent job(s). Multiple hashes may be specified to act
on multiple torrent jobs.

?action=stop&hash=[TORRENT HASH] This action tells 𝜇Torrent
to stop the specified torrent job(s). Multiple hashes may be specified to act
on multiple torrent jobs.

?action=pause&hash=[TORRENT HASH] This action tells 𝜇Torrent
to pause the specified torrent job(s). Multiple hashes may be specified to
act on multiple torrent jobs.

24
c○2010 BitTorrent, Inc.

TABLE OF CONTENTS TABLE OF CONTENTS

?action=forcestart&hash=[TORRENT HASH] This action tells 𝜇Torrent
to force the specified torrent job(s) to start. Multiple hashes may be specified
to act on multiple torrent jobs.

?action=unpause&hash=[TORRENT HASH] This action tells 𝜇Torrent
to unpause the specified torrent job(s). Multiple hashes may be specified to
act on multiple torrent jobs.

?action=recheck&hash=[TORRENT HASH] This action tells 𝜇Torrent
to recheck the torrent contents for the specified torrent job(s). Multiple
hashes may be specified to act on multiple torrent jobs.

?action=remove&hash=[TORRENT HASH] This action removes the
specified torrent job(s) from the torrent jobs list. Multiple hashes may be
specified to act on multiple torrent jobs. This action respects the option
“Move to trash if possible”.

?action=removedata&hash=[TORRENT HASH] This action removes
the specified torrent job(s) from the torrent jobs list and removes the corre-
sponding torrent contents (data) from disk. Multiple hashes may be speci-
fied to act on multiple torrent jobs. This action respects the option “Move
to trash if possible”.

?action=removetorrent&hash=[TORRENT HASH] This action re-
moves the specified torrent job(s) from the torrent jobs list and removes the
corresponding torrent file(s) from disk. Multiple hashes may be specified to
act on multiple torrent jobs. This action respects the option “Move to trash
if possible”.

?action=removedatatorrent&hash=[TORRENT HASH] This action
removes the specified torrent job(s) from the torrent jobs list, removes the
corresponding torrent file(s) from disk, and removes the corresponding tor-
rent contents (data) from disk. Multiple hashes may be specified to act
on multiple torrent jobs. This action respects the option “Move to trash if
possible”.

?action=setprio&hash=[TORRENTHASH]&p=[PRIORITY]&f=[FILE
INDEX] This action sets the priority for the specified file(s) in the torrent
job. The possible priority levels are the values returned by “getfiles”. A file is
specified using the zero-based index of the file in the inside the list returned

25
c○2010 BitTorrent, Inc.

TABLE OF CONTENTS TABLE OF CONTENTS

by “getfiles”. Only one priority level may be specified on each call to this
action, but multiple files may be specified.

?action=getxferhist This action returns the current transfer history.

?action=resetxferhist This action resets the current transfer history.

?action=getversion This action returns information about the server.

{
"version": [
{

"product_code": "server",
"ui_version": (revision number),
"engine_version": (revision number),
"major_version": (major version number)
"minor_version": (minor version number)
"user_agent": (user-agent)
"version_date": (date product was built)
"device_id": (identifies general type of target/OS)
"peer_id": (identifier sent to peers)

}]
}

?action=add-url&s=[TORRENT URL] This action adds a torrent job
from the given URL. For servers that require cookies, cookies can be sent
with the :COOKIE: method (see here). The string must be URL-encoded.

?action=add-file This action is different from the other actions in that it
uses HTTP POST instead of HTTP GET to submit data to 𝜇Torrent. The
HTTP form must use an enctype of “multipart/form-data” and have an input
field of type “file” with name “torrent_file” that stores the local path to the
file to upload to 𝜇Torrent.

Optional parameters to add-file and add-url actions:

&download_dir=<integer> This action determines which download di-
rectory to put the torrent in. The integer refers to the list of download dirs
the client has configured (see list-dirs action). 0 always means the default

26
c○2010 BitTorrent, Inc.

TABLE OF CONTENTS TABLE OF CONTENTS

directory. The list of available download directories must be created in the
btsettings.txt file. On PC systems the directories can be created by users
via the application, but not via the web UI. There is currently no API to
create download directories.

&path=<sub_path> This action determines a subdirectory to put the
file in, under the already chosen download directory. This path may not
contain “..” and must be a relative path.

http://[IP]:[PORT]/gui/?action=list-dirs The return value has a list,
download-dirs. Each entry in the list is a dictionary:

"download-dirs": [
{ "path": <full path>, "available": <available free disk space in MB> },
...
]

http://<ip>:<port>/proxy?id=<info-hash>&file=<file index> The
&file= parameter may be omitted if the torrent is a single file torrent. The
call will return the entire file, or a part of it if a range request was made to
it.

RSS Feed Actions:

?action=rss-remove&feed-id=[FEED ID] This action removes the cor-
responding RSS feed from the list of RSS feeds.

?action=rss-update&feed-id=[FEED ID] This action adds or updates
an RSS feed.

Optional parameters for rss-update action:

&download_dir=<integer> This action determines which download di-
rectory to put the torrent in. The integer refers to the list of download dirs
the client has configured (see list-dirs action). 0 always means the default
directory. The list of available download directories must be created in the
btsettings.txt file. On PC systems the directories can be created by users
via the application, but not via the web UI. There is currently no API to
create download directories.

27
c○2010 BitTorrent, Inc.

TABLE OF CONTENTS TABLE OF CONTENTS

&feed-id=<integer> This parameter identifies the RSS feed receiving the
updates. If this parameter is set to -1 or omitted a new RSS feed will be
created and the following will be included in the return:

:: “rss_ident” : [RSS IDENT] (integer),

&url=<string> This parameter identifies the URL of the RSS feed.

&alias=<string> This parameter identifies the RSS feed alias.

&subscribe=<boolean> This parameter signifies whether or not the user
wishes to subscribe to the RSS feed.

&smart-filter=<boolean> This parameter enables the smart filter func-
tionality on an RSS feed.

&enabled=<boolean> This enables or disables the RSS feed.

&update=1 If this is set the RSS feed is forced to update instead of waiting
for the next update interval. The update interval will be set accordingly.

RSS Filter Actions:

?action=filter-remove&filter-id=[FILTER ID] This action removes the
corresponding RSS filter from the list of RSS filters.

?action=filter-update&filter-id=[FILTER ID] This action adds or up-
dates an RSS filter.

Optional parameters for filter-update action:

?filter-id=<integer> The ID of the RSS filter to be updated. If this is
omitted or set to -1 a new filter will be created and the following will be
included in the return value:

:: “filter_ident”: [FEED ID] (integer),

?name=<string> Name of the RSS Filter.

28
c○2010 BitTorrent, Inc.

TABLE OF CONTENTS TABLE OF CONTENTS

?save-in=<string> Directory to save the downloaded RSS torrents in.

?episode=<string> Episode expression to download.

?filter=<string> Download filter expression.

?not-filter=<string> Download exception filter expression.

?label=<string> Label to apply to torrents downloaded by this filter rule.

?quality=<integer> Minimum quality to accept when qualifying for down-
load.

?episode-filter=<boolean> Set the enabling of downloading by episode.

?origname=<string> Filter original name.

?prio=<boolean> Prioritize this filter.

?smart-ep-filter=<boolean> Enable/disable smart episode filter.

?add-stopped=<boolean> Enable queuing of torrents selected by this fil-
ter as stopped for manual starting rather than adding them to the download
queue.

?postpone-mode=<boolean> Enable/disable postpone mode.

?feed-id=<integer> RSS feed to associate this filter with. If set to -1 the
feed is associated with all active RSS feeds.

Limitations

It is not possible to rename or relocate individual files in a torrent job.

29
c○2010 BitTorrent, Inc.

TABLE OF CONTENTS TABLE OF CONTENTS

Legal Notices

Copyright (c) 2010 BitTorrent Inc. All rights reserved.

BitTorrent and 𝜇Torrent are trademarks or registered trademarks of BitTor-
rent, Inc. used only under license.

30
c○2010 BitTorrent, Inc.

